%I
%S 213,227,357,809,1805,4259,10251,24331,57385,135913,322129,763095,
%T 1807991,4283219,10146569,24037921,56947673,134911263,319611383,
%U 757175635,1793784697,4249564025,10067427977,23850227423,56502354463
%N Number of (n+2)X(1+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 2 or 4
%C Column 1 of A252032
%H R. H. Hardin, <a href="/A252025/b252025.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n1) a(n2) +5*a(n3) 2*a(n4) +3*a(n5) 2*a(n6) 2*a(n7) 2*a(n8) 2*a(n9) +2*a(n11) for n>14
%e Some solutions for n=4
%e ..2..1..2....1..2..2....2..1..2....2..1..2....2..1..2....2..2..2....0..2..1
%e ..1..2..2....2..1..2....2..2..2....2..2..2....2..2..2....1..2..2....0..1..2
%e ..2..2..1....2..2..1....2..2..2....2..2..2....2..2..2....2..2..2....1..2..2
%e ..2..2..2....2..2..2....1..2..2....2..2..1....2..2..1....2..1..2....2..2..1
%e ..2..2..2....2..2..2....2..1..2....2..1..2....2..1..2....2..2..2....2..2..2
%e ..2..2..2....1..1..1....2..0..1....1..0..2....1..2..2....1..0..2....2..1..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 12 2014
